Back to Search Start Over

A Microfluidic-Based Investigation of Bacterial Attachment in Ureteral Stents

Authors :
Antonio De Grazia
Gareth LuTheryn
Alireza Meghdadi
Ali Mosayyebi
Erika J. Espinosa-Ortiz
Robin Gerlach
Dario Carugo
Source :
Micromachines, Vol 11, Iss 4, p 408 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Obstructions of the ureter lumen can originate from intrinsic or extrinsic factors, such as kidney stones, tumours, or strictures. These can affect the physiological flow of urine from the kidneys to the bladder, potentially causing infection, pain, and kidney failure. To overcome these complications, ureteral stents are often deployed clinically in order to temporarily re-establish urinary flow. Despite their clinical benefits, stents are prone to encrustation and biofilm formation that lead to reduced quality of life for patients; however, the mechanisms underlying the formation of crystalline biofilms in stents are not yet fully understood. In this study, we developed microfluidic-based devices replicating the urodynamic field within different configurations of an occluded and stented ureter. We employed computational fluid dynamic simulations to characterise the flow dynamic field within these models and investigated bacterial attachment (Pseudomonas fluorescens) by means of crystal violet staining and fluorescence microscopy. We identified the presence of hydrodynamic cavities in the vicinity of a ureteric occlusion, which were characterised by low levels of wall shear stress (WSS < 40 mPa), and observed that initiation of bacterial attachment occurred in these specific regions of the stented ureter. Notably, the bacterial coverage area was directly proportional to the number of cavities present in the model. Fluorescence microscopy confirmed that the number density of bacteria was greater within cavities (3 bacteria·mm−2) when compared to side-holes of the stent (1 bacterium·mm−2) or its luminal surface (0.12 bacteria·mm−2). These findings informed the design of a novel technological solution against bacterial attachment, which reduces the extent of cavity flow and increases wall shear stress over the stent’s surface.

Details

Language :
English
ISSN :
11040408 and 2072666X
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
edsdoj.4dd7477ce1c14f379840e5ded0979220
Document Type :
article
Full Text :
https://doi.org/10.3390/mi11040408