Back to Search Start Over

Understanding the Influence of Building Loads on Surface Settlement: A Case Study in the Central Business District of Beijing Combining Multi-Source Data

Authors :
Fengkai Li
Huili Gong
Beibei Chen
Mingliang Gao
Chaofan Zhou
Lin Guo
Source :
Remote Sensing, Vol 13, Iss 16, p 3063 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In metropolitan areas, the static load of high-rise buildings may result in uneven settlement, which seriously threatens residents’ living safety. Studying the response relationship between the additional stress of high-rise buildings and foundation settlement plays an important role in ensuring the safe development of metropolitan cities. Firstly, based on Persistent Scatterers Interferometric Aperture Radar (PS-InSAR) technology, we used 68 descending TerraSAR-X images to obtain the surface settlement in the study area from April 2010 to October 2018, which were validated with leveling benchmark monitoring results. Secondly, we calculated the additional stress of the building loads to quantify its effect on the uneven settlement in the Central Business District (CBD) of Beijing. Finally, two sets of characteristic points were selected to analyze the response relationships between foundation settlement and additional stress generated by building loads. The findings show: (1) The surface settlement rate varied from −145.2 to 24 mm/year in the Beijing Plain. The InSAR results agree well with the monitoring results derived from the leveling benchmark; the Pearson correlation coefficients were 0.98 and 0.95 in 2011–2013 and 2015–2016, respectively. (2) The stress results show that the depth of the influence of the static load of high-rise buildings was 74.9 m underground in the CBD. (3) The spatial distribution pattern of the additional stress is consistent with the foundation settlement. A characteristic point with greater additional stress in the same group has a higher foundation settlement rate. This relationship has also been found between the uneven foundation settlement and additional stress gradients. These findings provide scientific support for mitigating economic losses due to foundation settlement caused by additional stresses derived from building loads.

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.4dd1bac975a34b4483f87ccd25b003c1
Document Type :
article
Full Text :
https://doi.org/10.3390/rs13163063