Back to Search Start Over

Heterozygous missense variant in GLI2 impairs human endocrine pancreas development

Authors :
Laura M. Mueller
Abigail Isaacson
Heather Wilson
Anna Salowka
Isabel Tay
Maolian Gong
Nancy Samir Elbarbary
Klemens Raile
Francesca M. Spagnoli
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Missense variants are the most common type of coding genetic variants. Their functional assessment is fundamental for defining any implication in human diseases and may also uncover genes that are essential for human organ development. Here, we apply CRISPR-Cas9 gene editing on human iPSCs to study a heterozygous missense variant in GLI2 identified in two siblings with early-onset and insulin-dependent diabetes of unknown cause. GLI2 is a primary mediator of the Hedgehog pathway, which regulates pancreatic β-cell development in mice. However, neither mutations in GLI2 nor Hedgehog dysregulation have been reported as cause or predisposition to diabetes. We establish and study a set of isogenic iPSC lines harbouring the missense variant for their ability to differentiate into pancreatic β-like cells. Interestingly, iPSCs carrying the missense variant show altered GLI2 transcriptional activity and impaired differentiation of pancreatic progenitors into endocrine cells. RNASeq and network analyses unveil a crosstalk between Hedgehog and WNT pathways, with the dysregulation of non-canonical WNT signaling in pancreatic progenitors carrying the GLI2 missense variant. Collectively, our findings underscore an essential role for GLI2 in human endocrine development and identify a gene variant that may lead to diabetes.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.4dcf83d6ce84bcbaf966a9c073f3f02
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-46740-8