Back to Search
Start Over
Reasoning about Strategies: on the Satisfiability Problem
- Source :
- Logical Methods in Computer Science, Vol Volume 13, Issue 1 (2017)
- Publication Year :
- 2017
- Publisher :
- Logical Methods in Computer Science e.V., 2017.
-
Abstract
- Strategy Logic (SL, for short) has been introduced by Mogavero, Murano, and Vardi as a useful formalism for reasoning explicitly about strategies, as first-order objects, in multi-agent concurrent games. This logic turns out to be very powerful, subsuming all major previously studied modal logics for strategic reasoning, including ATL, ATL*, and the like. Unfortunately, due to its high expressiveness, SL has a non-elementarily decidable model-checking problem and the satisfiability question is undecidable, specifically Sigma_1^1. In order to obtain a decidable sublogic, we introduce and study here One-Goal Strategy Logic (SL[1G], for short). This is a syntactic fragment of SL, strictly subsuming ATL*, which encompasses formulas in prenex normal form having a single temporal goal at a time, for every strategy quantification of agents. We prove that, unlike SL, SL[1G] has the bounded tree-model property and its satisfiability problem is decidable in 2ExpTime, thus not harder than the one for ATL*.
Details
- Language :
- English
- ISSN :
- 18605974 and 48139955
- Volume :
- ume 13, Issue 1
- Database :
- Directory of Open Access Journals
- Journal :
- Logical Methods in Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4dae516fb8ab48139955369644afaabb
- Document Type :
- article
- Full Text :
- https://doi.org/10.23638/LMCS-13(1:9)2017