Back to Search Start Over

Study on tiered storage algorithm based on heat correlation of astronomical data

Authors :
Xin-Chen Ye
Hai-Long Zhang
Jie Wang
Ya-Zhou Zhang
Xu Du
Han Wu
Source :
Frontiers in Astronomy and Space Sciences, Vol 11 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

With the surge in astronomical data volume, modern astronomical research faces significant challenges in data storage, processing, and access. The I/O bottleneck issue in astronomical data processing is particularly prominent, limiting the efficiency of data processing. To address this issue, this paper proposes a tiered storage algorithm based on the access characteristics of astronomical data. The C4.5 decision tree algorithm is employed as the foundation to implement an astronomical data access correlation algorithm. Additionally, a data copy migration strategy is designed based on tiered storage technology to achieve efficient data access. Preprocessing tests were conducted on 418GB NSRT (Nanshan Radio Telescope) formaldehyde spectral line data, showcasing that tiered storage can potentially reduce data processing time by up to 38.15%. Similarly, utilizing 802.2 GB data from FAST (Five-hundred-meter Aperture Spherical radio Telescope) observations for pulsar search data processing tests, the tiered storage approach demonstrated a maximum reduction of 29.00% in data processing time. In concurrent testing of data processing workflows, the proposed astronomical data heat correlation algorithm in this paper achieved an average reduction of 17.78% in data processing time compared to centralized storage. Furthermore, in comparison to traditional heat algorithms, it reduced data processing time by 5.15%. The effectiveness of the proposed algorithm is positively correlated with the associativity between the algorithm and the processed data. The tiered storage algorithm based on the characteristics of astronomical data proposed in this paper is poised to provide algorithmic references for large-scale data processing in the field of astronomy in the future.

Details

Language :
English
ISSN :
2296987X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Astronomy and Space Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.4d8da8e123b24b89a65a34a39dccce8e
Document Type :
article
Full Text :
https://doi.org/10.3389/fspas.2024.1371249