Back to Search
Start Over
Mechanical Properties and Microscopic Mechanism of a Multi-Cementitious System Comprising Cement, Fly Ash, and Steel Slag Powder
- Source :
- Materials, Vol 16, Iss 22, p 7195 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- The objective of this study was to reduce the stockpile of steel slag, which is a solid waste generated in the steelmaking process, and promote the resource utilization of steel slag powder (SSP) in construction projects. Experimental research was conducted on SSP and fly ash (FA) as supplementary cementitious materials. Composite cement paste samples were prepared to investigate the effects of the water-to-binder ratio and cement-substitution rate on the macroscopic mechanical properties, including the setting time, fluidity, flexural strength, and compressive strength of the prepared paste. The mineral composition in the raw materials was measured using X-ray diffraction (XRD), and a micro-morphological and structural analysis of the hydrated cementitious material samples was performed using scanning electron microscopy (SEM); the SEM and Image Pro Plus (IPP) image analysis techniques were combined for a quantitative analysis of the microstructure. The results showed that the addition of FA and SSP delayed the hydration of cement, thereby improving the flowability of the composite paste. Under the same curing age and cement substitution rate, the sample strength decreased with increasing water-to-binder ratio. Under the same water-to-binder ratio and curing age, the variations in the flexural and compressive strengths of the SSP group samples were inconsistent in the early and later stages, and the sample group with 20% SSP exhibited optimal mechanical strength in the later stage. The microscopic results showed that the needle-like AFt crystals in the hydrated pores decreased in number with the increase in the SSP content. The hydration products of the FA–SSP admixture, such as C–S–H gel and RO phase, acted as pore fillers in alkaline environments. When the water-to-binder ratio was 0.4 and the FA-to-SSP ratio was 1:1 to replace 40% cement, the performance of the hardened cement paste was the best among all the test groups containing both FA and SSP. This study provides a theoretical basis for the practical application of SSP and FA as cementitious materials in construction-related fields.
- Subjects :
- steel slag powder
cement based
hydration activity
mechanical properties
microstructure
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 16
- Issue :
- 22
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4d1cb75e8840f58665902a0aca4124
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma16227195