Back to Search Start Over

SN 2022oqm: A Bright and Multipeaked Calcium-rich Transient

Authors :
S. Karthik Yadavalli
V. Ashley Villar
Luca Izzo
Yossef Zenati
Ryan J. Foley
J. Craig Wheeler
Charlotte R. Angus
Dominik Bánhidi
Katie Auchettl
Barna Imre Bíró
Attila Bódi
Zsófia Bodola
Thomas de Boer
Kenneth C. Chambers
Ryan Chornock
David A. Coulter
István Csányi
Borbála Cseh
Srujan Dandu
Kyle W. Davis
Connor Braden Dickinson
Diego Farias
Joseph Farah
Christa Gall
Hua Gao
D. Andrew Howell
Wynn V. Jacobson-Galan
Nandita Khetan
Charles D. Kilpatrick
Réka Könyves-Tóth
Levente Kriskovics
Natalie LeBaron
Kayla Loertscher
X. K. Le Saux
Raffaella Margutti
Eugene A. Magnier
Curtis McCully
Peter McGill
Hao-Yu Miao
Megan Newsome
Estefania Padilla Gonzalez
András Pál
Boróka H. Pál
Yen-Chen Pan
Collin A. Politsch
Conor L. Ransome
Enrico Ramirez-Ruiz
Armin Rest
Sofia Rest
Olivia Robinson
Huei Sears
Jackson Scheer
Ádám Sódor
Jonathan Swift
Péter Székely
Róbert Szakáts
Tamás Szalai
Kirsty Taggart
Giacomo Terreran
Padma Venkatraman
József Vinkó
Grace Yang
Henry Zhou
Source :
The Astrophysical Journal, Vol 972, Iss 2, p 194 (2024)
Publication Year :
2024
Publisher :
IOP Publishing, 2024.

Abstract

We present the photometric and spectroscopic evolution of SN 2022oqm, a nearby multipeaked hydrogen- and helium-weak calcium-rich transient (CaRT). SN 2022oqm was detected 13.1 kpc from its host galaxy, the face-on spiral galaxy NGC 5875. Extensive spectroscopic coverage reveals an early hot ( T ≥ 40,000 K) continuum and carbon features observed ∼1 day after discovery, SN Ic-like photospheric-phase spectra, and strong forbidden calcium emission starting 38 days after discovery. SN 2022oqm has a relatively high peak luminosity ( M _B = −17 mag) for CaRTs, making it an outlier in the population. We determine that three power sources are necessary to explain the light curve (LC), with each corresponding to a distinct peak. The first peak is powered by an expanding blackbody with a power-law luminosity, suggesting shock cooling by circumstellar material (CSM). Subsequent LC evolution is powered by a double radioactive decay model, consistent with two sources of photons diffusing through optically thick ejecta. From the LC, we derive an ejecta mass and ^56 Ni mass of ∼0.6 M _⊙ and ∼0.09 M _⊙ . Spectroscopic modeling ∼0.6 M _⊙ of ejecta, and with well-mixed Fe-peak elements throughout. We discuss several physical origins for SN 2022oqm and find either a surprisingly massive white dwarf progenitor or a peculiar stripped envelope model could explain SN 2022oqm. A stripped envelope explosion inside a dense, hydrogen- and helium-poor CSM, akin to SNe Icn, but with a large 56Ni mass and small CSM mass could explain SN 2022oqm. Alternatively, helium detonation on an unexpectedly massive white dwarf could also explain SN 2022oqm.

Details

Language :
English
ISSN :
15384357
Volume :
972
Issue :
2
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.4d10aa2627604741a9faa10435a19cd5
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-4357/ad5a7c