Back to Search Start Over

Contaminated Facade Identification Using Convolutional Neural Network and Image Processing

Authors :
Jiseok Lee
Jooyoung Hong
Garam Park
Hwa Soo Kim
Sungon Lee
Taewon Seo
Source :
IEEE Access, Vol 8, Pp 180010-180021 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

In recent years, as number of new building getting larger, there has been an increased interest in the cleaning of exterior walls. Accordingly, there is a growing interest in automatic cleaning robots that move around the outer building façade. These robots are also required to apply different cleaning methods to remove various contaminants on the outer wall of the building. However, current surface contaminant detection systems can either detect only a single type of contaminant, or are not compact enough for installation on mobile platforms that move around the outer façade. As cleaning workers are able to distinguish various contaminants with the naked eye, we aim to solve this problem by developing a machine-vision system using convolutional neural networks (CNNs) and image processing methods. As it is a compact system that uses only a camera to take pictures and a processor to process the images, it is suitable for applications involving mobile platforms. Object-type contaminants such as avian feces are handled by the YOLOv3 module using the object-detection algorithm. Area-type contaminants such as rusty stains are processed using the color-detection module using the HSV color space, median filter, and flood fill algorithm. Particle-type contaminants such as dust are handled by the grayscale module, converting images to grayscale images and then comparing the average brightness with a reference that is provided in advance. This proposed machine vision system will detect objects, areas, and particle-type contaminants with a single image and some reference images provided in advance.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.4d06e6c9e09448ae8e0b709ea9c12485
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.3027839