Back to Search Start Over

Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.)

Authors :
Bauer Philip J
Scheffler Brian E
Park Wonkeun
Campbell B Todd
Source :
BMC Plant Biology, Vol 10, Iss 1, p 142 (2010)
Publication Year :
2010
Publisher :
BMC, 2010.

Abstract

Abstract Background Cotton (Gossypium spp.) is produced in over 30 countries and represents the most important natural fiber in the world. One of the primary factors affecting both the quantity and quality of cotton production is water. A major facilitator of water movement through cell membranes of cotton and other plants are the aquaporin proteins. Aquaporin proteins are present as diverse forms in plants, where they function as transport systems for water and other small molecules. The plant aquaporins belong to the large major intrinsic protein (MIP) family. In higher plants, they consist of five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). Although a great deal is known about aquaporins in plants, very little is known in cotton. Results From a molecular cloning effort, together with a bioinformatic homology search, 71 upland cotton (G. hirsutum) aquaporin genes were identified. The cotton aquaporins consist of 28 PIP and 23 TIP members with high sequence similarity. We also identified 12 NIP and 7 SIP members that showed more divergence. In addition, one XIP member was identified that formed a distinct 5th subfamily. To explore the physiological roles of these aquaporin genes in cotton, expression analyses were performed for a select set of aquaporin genes from each subfamily using semi-quantitative reverse transcription (RT)-PCR. Our results suggest that many cotton aquaporin genes have high sequence similarity and diverse roles as evidenced by analysis of sequences and their expression. Conclusion This study presents a comprehensive identification of 71 cotton aquaporin genes. Phylogenetic analysis of amino acid sequences divided the large and highly similar multi-gene family into the known 5 aquaporin subfamilies. Together with expression and bioinformatic analyses, our results support the idea that the genes identified in this study represent an important genetic resource providing potential targets to modify the water use properties of cotton.

Subjects

Subjects :
Botany
QK1-989

Details

Language :
English
ISSN :
14712229
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.4c6c009c79d4969a09d09d48855c355
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2229-10-142