Back to Search Start Over

Synthesis, characterization, optical properties, biological activity and theoretical studies of a 4 nitrobenzylidene) amino) phenyl)imino)methyl)naphthalen-2-ol -based fluorescent Schiff base

Authors :
Sadeq M. AlHazmy
Mohamed Oussama Zouaghi
Ahmed N. Al-Hakimi
Thamer Alorini
Ibrahim A. Alhagri
Youssef Arfaoui
Rania Al-Ashwal
Lamjed Mansour
Naceur Hamdi
Source :
Heliyon, Vol 10, Iss 5, Pp e26349- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

A new Schiff base, 1-(E)-(4-((E) 4nitrobenzylidene) amino) phenyl)imino) methyl)naphthalen-2-ol (4NMN), was prepared from the reaction of p-phenylenediamine with 2-hydroxy-1-naphthaldehyde and 4-nitrobenzaldehyde and characterized with spectroscopic analysis. UV-VIS and NMR. Frontier molecular orbitals, molecular electrostatic potential, and chemical reactivity descriptors of the synthesized compound were studied using molecular modeling methods. The antibacterial and antifungal activities of the Schiff base were studied for its minimum inhibitory concentration. The compound showed a higher effect on yeast than against bacteria. Density functional theory (DFT) calculations were performed to study the mechanism of reaction for the synthesis of 4NMN, and the results were consistent with the experimental findings. 4NMN exhibited moderate antibacterial and antifungal activities and demonstrated higher inhibition potential against different resistant strains compared to the reference drug gentamycin. The absorption and fluorescence spectra of 4NMN were measured in different solvents, and the effect of relative polarity and acidity on the medium was observed. An inner filter effect was observed at high concentrations, and the compound showed considerable fluorescence enhancement with increasing medium viscosity and fluorescence quenching by the addition of traces of Cr1+ and Cu2+. Additionally, molecular docking studies were conducted to investigate the efficiency of antibacterial and antifungal targets.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.4c607e31b9b546018a580bb11f47fdd4
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e26349