Back to Search Start Over

Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model

Authors :
Y. H. Mao
Q. B. Li
D. K. Henze
Z. Jiang
D. B. A. Jones
M. Kopacz
C. He
L. Qi
M. Gao
W.-M. Hao
K.-N. Liou
Source :
Atmospheric Chemistry and Physics, Vol 15, Iss 13, Pp 7685-7702 (2015)
Publication Year :
2015
Publisher :
Copernicus Publications, 2015.

Abstract

We estimate black carbon (BC) emissions in the western United States for July–September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2° × 2.5° (a factor of 2.1 increase) and 47.3 Gg at 0.5° × 0.667° (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions (~ 35 % at 2° × 2.5° and ~ 15 % at 0.5° × 0.667°). The emissions are ~ 20–50 % larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6–6.5 Gg and anthropogenic BC emissions 8.6–12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective {a priori} emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
15
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.4c46fade0c8e44f6a93d518cb0a1c1fb
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-15-7685-2015