Back to Search Start Over

Extending Janus lectins architecture: Characterization and application to protocells

Authors :
Simona Notova
Lina Siukstaite
Francesca Rosato
Federica Vena
Aymeric Audfray
Nicolai Bovin
Ludovic Landemarre
Winfried Römer
Anne Imberty
Source :
Computational and Structural Biotechnology Journal, Vol 20, Iss , Pp 6108-6119 (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

Synthetic biology is a rapidly growing field with applications in biotechnology and biomedicine. Through various approaches, remarkable achievements, such as cell and tissue engineering, have been already accomplished. In synthetic glycobiology, the engineering of glycan binding proteins is being exploited for producing tools with precise topology and specificity. We developed the concept of engineered chimeric lectins, i.e., Janus lectin, with increased valency, and additional specificity. The novel engineered lectin, assembled as a fusion protein between the β-propeller domain from Ralstonia solanacearum and the β-trefoil domain from fungus Marasmius oreades, is specific for fucose and α-galactose and its unique protein architecture allows to bind these ligands simultaneously. The protein activity was tested with glycosylated giant unilamellar vesicles, resulting in the formation of proto-tissue-like structures through cross-linking of such protocells. The engineered protein recognizes and binds H1299 human lung epithelial cancer cells by its two domains. The biophysical properties of this new construct were compared with the two already existing Janus lectins, RSL-CBM40 and RSL-CBM77Rf. Denaturation profiles of the proteins indicate that the fold of each has a significant role in protein stability and should be considered during protein engineering.

Details

Language :
English
ISSN :
20010370
Volume :
20
Issue :
6108-6119
Database :
Directory of Open Access Journals
Journal :
Computational and Structural Biotechnology Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.4c341a470d3f43dd81905c7cc5299ad1
Document Type :
article
Full Text :
https://doi.org/10.1016/j.csbj.2022.11.005