Back to Search Start Over

A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles.

Authors :
Ellis Garai
Steven Sensarn
Cristina L Zavaleta
Nathan O Loewke
Stephan Rogalla
Michael J Mandella
Stephen A Felt
Shai Friedland
Jonathan T C Liu
Sanjiv S Gambhir
Christopher H Contag
Source :
PLoS ONE, Vol 10, Iss 4, p e0123185 (2015)
Publication Year :
2015
Publisher :
Public Library of Science (PLoS), 2015.

Abstract

The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
4
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.4c2dc985ab548b297c3e32804841afd
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0123185