Back to Search
Start Over
Spin-Related Micro-Photoluminescence in Fe3+ Doped ZnSe Nanoribbons
- Source :
- Applied Sciences, Vol 7, Iss 1, p 39 (2016)
- Publication Year :
- 2016
- Publisher :
- MDPI AG, 2016.
-
Abstract
- Spin-related emission properties have important applications in the future information technology; however, they involve microscopic ferromagnetic coupling, antiferromagnetic or ferrimagnetic coupling between transition metal ions and excitons, or d state coupling with phonons is not well understood in these diluted magnetic semiconductors (DMS). Fe3+ doped ZnSe nanoribbons, as a DMS example, have been successfully prepared by a thermal evaporation method. Their power-dependent micro-photoluminescence (PL) spectra and temperature-dependent PL spectra of a single ZnSe:Fe nanoribbon have been obtained and demonstrated that alio-valence ion doping diminishes the exciton magnetic polaron (EMP) effect by introducing exceeded charges. The d-d transition emission peaks of Fe3+ assigned to the 4T2 (G) → 6A1 (S) transition at 553 nm and 4T1 (G) → 6A1 (S) transition at 630 nm in the ZnSe lattice have been observed. The emission lifetimes and their temperature dependences have been obtained, which reflected different spin–phonon interactions. There exists a sharp decrease of PL lifetime at about 60 K, which hints at a magnetic phase transition. These spin–spin and spin–phonon interaction related PL phenomena are applicable in the future spin-related photonic nanodevices.
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4c237e5fb28e4098ae3f74755fcd215f
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/app7010039