Back to Search
Start Over
Computational inference of cancer-specific vulnerabilities in clinical samples
- Source :
- Genome Biology, Vol 21, Iss 1, Pp 1-24 (2020)
- Publication Year :
- 2020
- Publisher :
- BMC, 2020.
-
Abstract
- Abstract Background Systematic in vitro loss-of-function screens provide valuable resources that can facilitate the discovery of drugs targeting cancer vulnerabilities. Results We develop a deep learning-based method to predict tumor-specific vulnerabilities in patient samples by leveraging a wealth of in vitro screening data. Acquired dependencies of tumors are inferred in cases in which one allele is disrupted by inactivating mutations or in association with oncogenic mutations. Nucleocytoplasmic transport by Ran GTPase is identified as a common vulnerability in Her2-positive breast cancers. Vulnerability to loss of Ku70/80 is predicted for tumors that are defective in homologous recombination and rely on nonhomologous end joining for DNA repair. Our experimental validation for Ran, Ku70/80, and a proteasome subunit using patient-derived cells shows that they can be targeted specifically in particular tumors that are predicted to be dependent on them. Conclusion This approach can be applied to facilitate the development of precision therapeutic targets for different tumors.
- Subjects :
- Biology (General)
QH301-705.5
Genetics
QH426-470
Subjects
Details
- Language :
- English
- ISSN :
- 1474760X
- Volume :
- 21
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Genome Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4be84aad766546eaa273ec862d40e63f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13059-020-02077-1