Back to Search
Start Over
Contrast-free ultrasound imaging for blood flow assessment of the lower limb in patients with peripheral arterial disease: a feasibility study
- Source :
- Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract While being a relatively prevalent condition particularly among aging patients, peripheral arterial disease (PAD) of lower extremities commonly goes undetected or misdiagnosed due to its symptoms being nonspecific. Additionally, progression of PAD in the absence of timely intervention can lead to dire consequences. Therefore, development of non-invasive and affordable diagnostic approaches can be highly beneficial in detection and treatment planning for PAD patients. In this study, we present a contrast-free ultrasound-based quantitative blood flow imaging technique for PAD diagnosis. The method involves monitoring the variations of blood flow in the calf muscle in response to thigh-pressure-cuff-induced occlusion. Four quantitative metrics are introduced for analysis of these variations. These metrics include post-occlusion to baseline flow intensity variation (PBFIV), total response region (TRR), Lag0 response region (L0RR), and Lag4 (and more) response region (L4 + RR). We examine the feasibility of this method through an in vivo study consisting of 14 PAD patients with abnormal ankle-brachial index (ABI) and 8 healthy volunteers. Ultrasound data acquired from 13 legs in the patient group and 13 legs in the healthy group are analyzed. Out of the four utilized metrics, three exhibited significantly different distributions between the two groups (p-value
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4bda3c4c28784d0ab84c08368b1165d8
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-023-38576-x