Back to Search Start Over

WSPolyp-SAM: Weakly Supervised and Self-Guided Fine-Tuning of SAM for Colonoscopy Polyp Segmentation

Authors :
Tingting Cai
Hongping Yan
Kun Ding
Yan Zhang
Yueyue Zhou
Source :
Applied Sciences, Vol 14, Iss 12, p 5007 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Ensuring precise segmentation of colorectal polyps holds critical importance in the early diagnosis and treatment of colorectal cancer. Nevertheless, existing deep learning-based segmentation methods are fully supervised, requiring extensive, precise, manual pixel-level annotation data, which leads to high annotation costs. Additionally, it remains challenging to train large-scale segmentation models when confronted with limited colonoscopy data. To address these issues, we introduce the general segmentation foundation model—the Segment Anything Model (SAM)—into the field of medical image segmentation. Fine-tuning the foundation model is an effective approach to tackle sample scarcity. However, current SAM fine-tuning techniques still rely on precise annotations. To overcome this limitation, we propose WSPolyp-SAM, a novel weakly supervised approach for colonoscopy polyp segmentation. WSPolyp-SAM utilizes weak annotations to guide SAM in generating segmentation masks, which are then treated as pseudo-labels to guide the fine-tuning of SAM, thereby reducing the dependence on precise annotation data. To improve the reliability and accuracy of pseudo-labels, we have designed a series of enhancement strategies to improve the quality of pseudo-labels and mitigate the negative impact of low-quality pseudo-labels. Experimental results on five medical image datasets demonstrate that WSPolyp-SAM outperforms current fully supervised mainstream polyp segmentation networks on the Kvasir-SEG, ColonDB, CVC-300, and ETIS datasets. Furthermore, by using different amounts of training data in weakly supervised and fully supervised experiments, it is found that weakly supervised fine-tuning can save 70% to 73% of annotation time costs compared to fully supervised fine-tuning. This study provides a new perspective on the combination of weakly supervised learning and SAM models, significantly reducing annotation time and offering insights for further development in the field of colonoscopy polyp segmentation.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.4bd4ab1bf8ba4668865a2a555b1b0e09
Document Type :
article
Full Text :
https://doi.org/10.3390/app14125007