Back to Search
Start Over
Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer
- Source :
- Progress in Earth and Planetary Science, Vol 4, Iss 1, Pp 1-24 (2017)
- Publication Year :
- 2017
- Publisher :
- SpringerOpen, 2017.
-
Abstract
- Abstract This article reviews the major outcomes of a 5-year (2011–2016) project using the K computer to perform global numerical atmospheric simulations based on the non-hydrostatic icosahedral atmospheric model (NICAM). The K computer was made available to the public in September 2012 and was used as a primary resource for Japan’s Strategic Programs for Innovative Research (SPIRE), an initiative to investigate five strategic research areas; the NICAM project fell under the research area of climate and weather simulation sciences. Combining NICAM with high-performance computing has created new opportunities in three areas of research: (1) higher resolution global simulations that produce more realistic representations of convective systems, (2) multi-member ensemble simulations that are able to perform extended-range forecasts 10–30 days in advance, and (3) multi-decadal simulations for climatology and variability. Before the K computer era, NICAM was used to demonstrate realistic simulations of intra-seasonal oscillations including the Madden-Julian oscillation (MJO), merely as a case study approach. Thanks to the big leap in computational performance of the K computer, we could greatly increase the number of cases of MJO events for numerical simulations, in addition to integrating time and horizontal resolution. We conclude that the high-resolution global non-hydrostatic model, as used in this five-year project, improves the ability to forecast intra-seasonal oscillations and associated tropical cyclogenesis compared with that of the relatively coarser operational models currently in use. The impacts of the sub-kilometer resolution simulation and the multi-decadal simulations using NICAM are also reviewed.
Details
- Language :
- English
- ISSN :
- 21974284
- Volume :
- 4
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Progress in Earth and Planetary Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4b5f679e0cee4767a6b203231456fe7d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s40645-017-0127-8