Back to Search
Start Over
Activation of NRF2 and ATF4 Signaling by the Pro-Glutathione Molecule I-152, a Co-Drug of N-Acetyl-Cysteine and Cysteamine
- Source :
- Antioxidants, Vol 10, Iss 2, p 175 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- I-152 combines two pro-glutathione (GSH) molecules, namely N-acetyl-cysteine (NAC) and cysteamine (MEA), to improve their potency. The co-drug efficiently increases/replenishes GSH levels in vitro and in vivo; little is known about its mechanism of action. Here we demonstrate that I-152 not only supplies GSH precursors, but also activates the antioxidant kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 (KEAP1/NRF2) pathway. The mechanism involves disulfide bond formation between KEAP1 cysteine residues, NRF2 stabilization and enhanced expression of the γ-glutamil cysteine ligase regulatory subunit. Accordingly, a significant increase in GSH levels, not reproduced by treatment with NAC or MEA alone, was found. Compared to its parent compounds, I-152 delivered NAC more efficiently within cells and displayed increased reactivity to KEAP1 compared to MEA. While at all the concentrations tested, I-152 activated the NRF2 pathway; high doses caused co-activation of activating transcription factor 4 (ATF4) and ATF4-dependent gene expression through a mechanism involving Atf4 transcriptional activation rather than preferential mRNA translation. In this case, GSH levels tended to decrease over time, and a reduction in cell proliferation/survival was observed, highlighting that there is a concentration threshold which determines the transition from advantageous to adverse effects. This body of evidence provides a molecular framework for the pro-GSH activity and dose-dependent effects of I-152 and shows how synergism and cross reactivity between different thiol species could be exploited to develop more potent drugs.
- Subjects :
- GSH
Cysteamine
N-acetyl cysteine
KEAP1
NRF2
ATF4
Therapeutics. Pharmacology
RM1-950
Subjects
Details
- Language :
- English
- ISSN :
- 20763921
- Volume :
- 10
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Antioxidants
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4b3827904ea94069a23652894e33dc36
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/antiox10020175