Back to Search Start Over

Machine vision-based recognition of safety signs in work environments

Authors :
Jesús-Ángel Román-Gallego
María-Luisa Pérez-Delgado
Miguel A. Conde
Marcos Luengo Viñuela
Source :
Frontiers in Public Health, Vol 12 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

The field of image recognition is extensively researched, with applications addressing numerous challenges posed by the scientific community. Notably among these challenges are those related to individual safety. This article presents a system designed for the application of image recognition in the realm of Occupational Risk Prevention—a concern of paramount importance due to the imperative of preventing workplace accidents as falls, collisions, or other types of accidents for the benefit of both workers and enterprises. In this study, convolutional neural networks are employed due to their exceptional efficacy in image recognition. Leveraging this technology, the focus is on the recognition of safety signs used in Occupational Risk Prevention. The primary objective is to enable the recognition of these signs regardless of their orientation or potential degradation, phenomena commonly observed due to regular exposure to environmental elements or deliberate defacement. The results of this research substantiate the feasibility of integrating this technology into devices capable of promptly alerting individuals to potential risks. However, to improve classification capabilities, especially for highly degraded or complex images, a larger and more diverse data set might be needed, including real-world images that introduce greater entropy and variability. Implementing such a system would provide workers and companies with a proactive measure against workplace accidents, thereby enhancing overall safety in occupational environments.

Details

Language :
English
ISSN :
22962565
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Public Health
Publication Type :
Academic Journal
Accession number :
edsdoj.4b25933f84e44f599ed8f6f05a02dd02
Document Type :
article
Full Text :
https://doi.org/10.3389/fpubh.2024.1431757