Back to Search Start Over

Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor

Authors :
Saurabh Singh
Rakesh K. Sahoo
Nanasaheb M. Shinde
Je Moon Yun
Rajaram S. Mane
Kwang Ho Kim
Source :
Energies, Vol 12, Iss 17, p 3320 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

In this work, we report the synthesis of a Bi2O3-MnO2 nanocomposite as an electrochemical supercapacitor (ES) electrode via a simple, low-cost, eco-friendly, and low-temperature solid-state chemical process followed by air annealing. This as-synthesized nanocomposite was initially examined in terms of its structure, morphology, phase purity, and surface area using different analytical techniques and thereafter subjected to electrochemical measurements. Its electrochemical performance demonstrated excellent supercapacitive properties in a wide potential window. Its specific capacitance was able to reach 161 F g−1 at a current density of 1A g−1 and then showed a superior rate capability up to 10 A g−1. Furthermore, it demonstrated promising cycling stability at 5 A g−1 with 95% retention even after 10,000 charge−discharge cycles in a wide potential window of 1.3 V, evidencing the synergistic impact of both Bi2O3 and MnO2 in the Bi2O3-MnO2 ES electrode. Additionally, the practical reliability of the envisioned electrode was ascertained by the fabrication of a symmetric Bi2O3-MnO2//Bi2O3-MnO2 pencil-type supercapacitor device that displayed an energy density of 18.4 Wh kg−1 at a power density of 600 W kg−1 and a substantial cyclic stability up to 5000 cycles. Subsequently, an LED was also powered at its full brightness using three of these devices connected in series in order to demonstrate the real-time application of the Bi2O3-MnO2 ES electrode.

Details

Language :
English
ISSN :
19961073 and 12173320
Volume :
12
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.4adacd5fa21c48eaa677ad610a503a30
Document Type :
article
Full Text :
https://doi.org/10.3390/en12173320