Back to Search
Start Over
Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number
- Source :
- AIMS Mathematics, Vol 8, Iss 12, Pp 29352-29367 (2023)
- Publication Year :
- 2023
- Publisher :
- AIMS Press, 2023.
-
Abstract
- The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 8
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4a83ac5f09564fa887c1c6b2de98d66c
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.20231502?viewType=HTML