Back to Search Start Over

Sharp bounds for the general Randić index of graphs with fixed number of vertices and cyclomatic number

Authors :
Guifu Su
Yue Wu
Xiaowen Qin
Junfeng Du
Weili Guo
Zhenghang Zhang
Lifei Song
Source :
AIMS Mathematics, Vol 8, Iss 12, Pp 29352-29367 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

The cyclomatic number, denoted by $ \gamma $, of a graph $ G $ is the minimum number of edges of $ G $ whose removal makes $ G $ acyclic. Let $ \mathscr{G}_{n}^{\gamma} $ be the class of all connected graphs with order $ n $ and cyclomatic number $ \gamma $. In this paper, we characterized the graphs in $ \mathscr{G}_{n}^{\gamma} $ with minimum general Randić index for $ \gamma\geq 3 $ and $ 1\leq\alpha\leq \frac{39}{25} $. These extend the main result proved by A. Ali, K. C. Das and S. Akhter in 2022. The elements of $ \mathscr{G}_{n}^{\gamma} $ with maximum general Randić index were also completely determined for $ \gamma\geq 3 $ and $ \alpha\geq 1 $.

Details

Language :
English
ISSN :
24736988
Volume :
8
Issue :
12
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.4a83ac5f09564fa887c1c6b2de98d66c
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20231502?viewType=HTML