Back to Search Start Over

Lymphocyte detection for cancer analysis using a novel fusion block based channel boosted CNN

Authors :
Zunaira Rauf
Abdul Rehman Khan
Anabia Sohail
Hani Alquhayz
Jeonghwan Gwak
Asifullah Khan
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Tumor-infiltrating lymphocytes, specialized immune cells, are considered an important biomarker in cancer analysis. Automated lymphocyte detection is challenging due to its heterogeneous morphology, variable distribution, and presence of artifacts. In this work, we propose a novel Boosted Channels Fusion-based CNN “BCF-Lym-Detector” for lymphocyte detection in multiple cancer histology images. The proposed network initially selects candidate lymphocytic regions at the tissue level and then detects lymphocytes at the cellular level. The proposed “BCF-Lym-Detector” generates diverse boosted channels by utilizing the feature learning capability of different CNN architectures. In this connection, a new adaptive fusion block is developed to combine and select the most relevant lymphocyte-specific features from the generated enriched feature space. Multi-level feature learning is used to retain lymphocytic spatial information and detect lymphocytes with variable appearances. The assessment of the proposed “BCF-Lym-Detector” show substantial improvement in terms of F-score (0.93 and 0.84 on LYSTO and NuClick, respectively), which suggests that the diverse feature extraction and dynamic feature selection enhanced the feature learning capacity of the proposed network. Moreover, the proposed technique’s generalization on unseen test sets with a good recall (0.75) and F-score (0.73) shows its potential use for pathologists’ assistance.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4a69517eafc54f8688b49cfa1d7210bc
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-40581-z