Back to Search Start Over

Transient Thermal Field Analysis in ACCC Power Lines by the Green’s Function Method

Authors :
Jerzy Gołębiowski
Marek Zaręba
Source :
Energies, Vol 13, Iss 1, p 280 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The paper investigates the dynamics of the thermal field of the ACCC (aluminum conductor composite core) line. The system was heated by solar radiation and current flow. Conductor cooling was modeled using the total heat transfer coefficient as the sum of convective and radiative components. The temperature increase generated by the current is described by a system of parabolic differential equations with an appropriate set of boundary, initial and continuity condition. The mentioned boundary-initial problem was solved by a modified Green’s method, adapted to the layered structure of the system. For this purpose, Green’s functions, as the kernels of integral operators inverse to differential ones, were determined. Aluminum resistivity and heat transfer coefficient change significantly with temperature. For this reason, the solution to the problem is presented in the form of a lower and upper estimation of the heating curve and local time constant. A steady-state current rating was also determined. The results are presented graphically and verified by other methods (power balance and finite element). The physical interpretation of the presented solution is also given.

Details

Language :
English
ISSN :
19961073
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.4a53880a02dc4dc7a33f82767948bf42
Document Type :
article
Full Text :
https://doi.org/10.3390/en13010280