Back to Search Start Over

Pansharpening via Multiscale Embedding and Dual Attention Transformers

Authors :
Wensheng Fan
Fan Liu
Jingzhi Li
Source :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 2705-2717 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

Pansharpening is a fundamental and crucial image processing task for many remote sensing applications, which generates a high-resolution multispectral image by fusing a low-resolution multispectral image and a high-resolution panchromatic image. Recently, vision transformers have been introduced into the pansharpening task for utilizing global contextual information. However, long-range and local dependencies modeling and multiscale feature learning are all essential to the pansharpening task. Learning and exploiting these various information raises a big challenge and limits the performance and efficiency of existing pansharpening methods. To solve this issue, we propose a pansharpening network based on multiscale embedding and dual attention transformers (MDPNet). Specifically, a multiscale embedding block is proposed to embed multiscale information of the images into vectors. Thus, transformers only need to process a multispectral embedding sequence and a panchromatic embedding sequence to efficiently use multiscale information. Furthermore, an additive hybrid attention transformer is proposed to fuse the embedding sequences in an additive injection manner. Finally, a channel self-attention transformer is proposed to utilize channel correlations for high-quality detail generation. Experiments over QuickBird and WorldView-3 datasets demonstrate the proposed MDPNet outperforms state-of-the-art methods visually and quantitatively with low running time. Ablation studies further verify the effectiveness of the proposed multiscale embedding and transformers in pansharpening.

Details

Language :
English
ISSN :
21511535
Volume :
17
Database :
Directory of Open Access Journals
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.4a4fe6af51c5446d9a2167dcb36a6b6e
Document Type :
article
Full Text :
https://doi.org/10.1109/JSTARS.2023.3344215