Back to Search Start Over

Alantolactone, a natural sesquiterpene lactone, has potent antitumor activity against glioblastoma by targeting IKKβ kinase activity and interrupting NF-κB/COX-2-mediated signaling cascades

Authors :
Xun Wang
Zhenlong Yu
Chao Wang
Wei Cheng
Xiangge Tian
Xiaokui Huo
Yan Wang
Chengpeng Sun
Lei Feng
Jinshan Xing
Yulong Lan
Dongdong Sun
Qingjuan Hou
Baojing Zhang
Xiaochi Ma
Bo Zhang
Source :
Journal of Experimental & Clinical Cancer Research, Vol 36, Iss 1, Pp 1-14 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background Glioblastoma multiforme (GBM) is one of the most refractory and palindromic central nervous system (CNS) neoplasms, and current treatments have poor effects in GBM patients. Hence, the identification of novel therapeutic targets and the development of effective treatment strategies are essential. Alantolactone (ATL) has a wide range of pharmacological activities, and its anti-tumor effect is receiving increasing attention. However, the molecular mechanism underlying the anti-GBM activity of ATL remains poorly understood. Methods The biological functions of ATL in GBM cells were investigated using migration/invasion, colony formation and cell cycle/apoptosis assays. The localization of nuclear factor kappa B (NF-κB) p50/p65 and its binding to the cyclooxygenase 2 (COX-2) promoter were determined using confocal immunofluorescence, a streptavidin-agarose pulldown assay and a chromatin immunoprecipitation (ChIP) assay. IKKβ kinase activity was determined using a cell IKKβ kinase activity spectrophotometry quantitative detection kit and a molecular docking study. LC-MS/MS analysis was performed to determine the ability of ATL to traverse the blood-brain barrier (BBB). The in vivo anti-tumor efficacy of ATL was also analyzed in xenografted nude mice. Western blot analysis was performed to detect the protein expression levels. Results ATL significantly suppressed the growth of GBM in vivo and in vitro. ATL significantly reduced the expression of COX-2 by inhibiting the kinase activity of IKKβ by targeting the ATP-binding site and then attenuating the binding of NF-κB to the COX-2 promoter region. Furthermore, ATL induced apoptosis by activating the cytochrome c (cyt c)/caspase cascade signaling pathway. Moreover, ATL could penetrate the BBB. Conclusions ATL exerts its anti-tumor effects in human GBM cells at least in part via NF-κB/COX-2-mediated signaling cascades by inhibiting IKKβ kinase activity. ATL, which is a natural small molecule inhibitor, is a promising candidate for clinical applications in the treatment of CNS tumors.

Details

Language :
English
ISSN :
17569966
Volume :
36
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Experimental & Clinical Cancer Research
Publication Type :
Academic Journal
Accession number :
edsdoj.4a2b699d34be433cbe30d249cdfe904e
Document Type :
article
Full Text :
https://doi.org/10.1186/s13046-017-0563-8