Back to Search Start Over

Antiviral properties of porous graphene, graphene oxide and graphene foam ultrafine fibers against Phi6 bacteriophage

Authors :
Seda Gungordu Er
Tanveer A. Tabish
Mohan Edirisinghe
Rupy Kaur Matharu
Source :
Frontiers in Medicine, Vol 9 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

As the world has experienced in the Coronavirus Disease 2019 pandemic, viral infections have devastating effects on public health. Personal protective equipment with high antiviral features has become popular among healthcare staff, researchers, immunocompromised people and more to minimize this effect. Graphene and its derivatives have been included in many antimicrobial studies due to their exceptional physicochemical properties. However, scientific studies on antiviral graphene are much more limited than antibacterial and antifungal studies. The aim of this study was to produce nanocomposite fibers with high antiviral properties that can be used for personal protective equipment and biomedical devices. In this work, 10 wt% polycaprolactone-based fibers were prepared with different concentrations (0.1, 0.5, 1, 2, 4 w/w%) of porous graphene, graphene oxide and graphene foam in acetone by using electrospinning. SEM, FTIR and XRD characterizations were applied to understand the structure of fibers and the presence of materials. According to SEM results, the mean diameters of the porous graphene, graphene oxide and graphene foam nanofibers formed were around 390, 470, and 520 nm, respectively. FTIR and XRD characterization results for 2 w/w% concentration nanofibers demonstrated the presence of graphene oxide, porous graphene and graphene foam nanomaterials in the fiber. The antiviral properties of the formed fibers were tested against Pseudomonas phage Phi6. According to the results, concentration-dependent antiviral activity was observed, and the strongest viral inhibition graphene oxide-loaded nanofibers were 33.08 ± 1.21% at the end of 24 h.

Details

Language :
English
ISSN :
2296858X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.49c96d47b7e44868b7b7bad2d5eff0f8
Document Type :
article
Full Text :
https://doi.org/10.3389/fmed.2022.1032899