Back to Search Start Over

Research on Impact Stress Transfer Characteristics of Lunar Rock Coring Drill

Authors :
Peng Li
Yizhuo Wang
Bo Xu
Junwei Liu
Weiwei Zhang
Source :
Shock and Vibration, Vol 2021 (2021)
Publication Year :
2021
Publisher :
Hindawi Limited, 2021.

Abstract

In the whole lunar surface drilling and sampling task, it is critical to make the operation of the drilling and sampling impact system efficient and reliable. This paper focuses on how to improve the impact stress obtained at the cutting edge of the drill bit. Firstly, with the objective of maximizing the output impact energy, the design parameters of the percussive mechanism are optimally selected; based on the one-dimensional stress wave transfer theory, the collision input model and transfer models of impact stress in the drilling tool are established. Secondly, in order to verify the above design parameters and theoretical models, the percussive drive characteristics’ test and the transfer characteristics’ tests of impact stress in the drill stem and drilling tool joints are carried out in turn. The experimental results are consistent with the theoretical analysis, which clarifies the transfer characteristics of the impact stress at the various stages of generation, incidence, and transfer to the cutting edge. It was finally found that increasing the percussive frequency and impact energy of the percussive mechanism as well as the contact stiffness of the collision surface can increase the incident impact stress of the drilling tool, while reducing the length of the screw connection between the drill bit and the drill stem can reduce the impact stress loss. This provides a theoretical reference for the design of the percussive mechanism and drilling tools in lunar surface drilling and sampling tasks.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
10709622 and 18759203
Volume :
2021
Database :
Directory of Open Access Journals
Journal :
Shock and Vibration
Publication Type :
Academic Journal
Accession number :
edsdoj.49c080ca72a5460aa1efa9c18af93458
Document Type :
article
Full Text :
https://doi.org/10.1155/2021/1555295