Back to Search
Start Over
Computational models for prediction of protein–protein interaction in rice and Magnaporthe grisea
- Source :
- Frontiers in Plant Science, Vol 13 (2023)
- Publication Year :
- 2023
- Publisher :
- Frontiers Media S.A., 2023.
-
Abstract
- IntroductionPlant–microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein–protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease.MethodsIn this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale.Results and DiscussionA total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen–host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.
- Subjects :
- rice
M. grisea
interolog
domain
gene ontology
phylogenetic
Plant culture
SB1-1110
Subjects
Details
- Language :
- English
- ISSN :
- 1664462X
- Volume :
- 13
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Plant Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.494b7e357434b44935973fa69908a8a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fpls.2022.1046209