Back to Search Start Over

Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol

Authors :
Sam G. Edalat
Reto Gerber
Miranda Houtman
Janine Lückgen
Rui Lourenço Teixeira
Maria del Pilar Palacios Cisneros
Tamara Pfanner
Tadeja Kuret
Nadja Ižanc
Raphael Micheroli
Joaquim Polido-Pereira
Fernando Saraiva
Swathi Lingam
Kristina Burki
Blaž Burja
Chantal Pauli
Žiga Rotar
Matija Tomšič
Saša Čučnik
João Eurico Fonseca
Oliver Distler
Ângelo Calado
Vasco C. Romão
Caroline Ospelt
Snežna Sodin-Semrl
Mark D. Robinson
Mojca Frank Bertoncelj
Source :
iScience, Vol 27, Iss 6, Pp 109707- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Summary: In this study, we optimized the dissociation of synovial tissue biopsies for single-cell omics studies and created a single-cell atlas of human synovium in inflammatory arthritis. The optimized protocol allowed consistent isolation of highly viable cells from tiny fresh synovial biopsies, minimizing the synovial biopsy drop-out rate. The synovium scRNA-seq atlas contained over 100,000 unsorted synovial cells from 25 synovial tissues affected by inflammatory arthritis, including 16 structural, 11 lymphoid, and 15 myeloid cell clusters. This synovial cell map expanded the diversity of synovial cell types/states, detected synovial neutrophils, and broadened synovial endothelial cell classification. We revealed tissue-resident macrophage subsets with proposed matrix-sensing (FOLR2+COLEC12high) and iron-recycling (LYVE1+SLC40A1+) activities and identified fibroblast subsets with proposed functions in cartilage breakdown (SOD2highSAA1+SAA2+SDC4+) and extracellular matrix remodeling (SERPINE1+COL5A3+LOXL2+). Our study offers an efficient synovium dissociation method and a reference scRNA-seq resource, that advances the current understanding of synovial cell heterogeneity in inflammatory arthritis.

Details

Language :
English
ISSN :
25890042
Volume :
27
Issue :
6
Database :
Directory of Open Access Journals
Journal :
iScience
Publication Type :
Academic Journal
Accession number :
edsdoj.4949afb345a94708b58cea17f6bb5dbc
Document Type :
article
Full Text :
https://doi.org/10.1016/j.isci.2024.109707