Back to Search Start Over

DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues

Authors :
Roohallah Mahdi-Esferizi
Behnaz Haji Molla Hoseyni
Amir Mehrpanah
Yazdan Golzade
Ali Najafi
Fatemeh Elahian
Amin Zadeh Shirazi
Guillermo A. Gomez
Shahram Tahmasebian
Source :
BMC Bioinformatics, Vol 24, Iss 1, Pp 1-22 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background P4 medicine (predict, prevent, personalize, and participate) is a new approach to diagnosing and predicting diseases on a patient-by-patient basis. For the prevention and treatment of diseases, prediction plays a fundamental role. One of the intelligent strategies is the design of deep learning models that can predict the state of the disease using gene expression data. Results We create an autoencoder deep learning model called DeeP4med, including a Classifier and a Transferor that predicts cancer's gene expression (mRNA) matrix from its matched normal sample and vice versa. The range of the F1 score of the model, depending on tissue type in the Classifier, is from 0.935 to 0.999 and in Transferor from 0.944 to 0.999. The accuracy of DeeP4med for tissue and disease classification was 0.986 and 0.992, respectively, which performed better compared to seven classic machine learning models (Support Vector Classifier, Logistic Regression, Linear Discriminant Analysis, Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbors). Conclusions Based on the idea of DeeP4med, by having the gene expression matrix of a normal tissue, we can predict its tumor gene expression matrix and, in this way, find effective genes in transforming a normal tissue into a tumor tissue. Results of Differentially Expressed Genes (DEGs) and enrichment analysis on the predicted matrices for 13 types of cancer showed a good correlation with the literature and biological databases. This led that by using the gene expression matrix, to train the model with features of each person in a normal and cancer state, this model could predict diagnosis based on gene expression data from healthy tissue and be used to identify possible therapeutic interventions for those patients.

Details

Language :
English
ISSN :
14712105
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.49369452dfe14d789283eb694cc8121e
Document Type :
article
Full Text :
https://doi.org/10.1186/s12859-023-05400-2