Back to Search Start Over

Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen

Authors :
Chenggong Liu
Na Duan
Xiaona Chen
Xu Li
Naqi Zhao
Wenxu Cao
Huiqing Li
Bo Liu
Fengsen Tan
Xiulian Zhao
Qinghe Li
Source :
Plants, Vol 12, Iss 4, p 895 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L−1 nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes’ responses to increased nitrogen in the future.

Details

Language :
English
ISSN :
22237747
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.48dbc037cb24144aa9b33875d29f389
Document Type :
article
Full Text :
https://doi.org/10.3390/plants12040895