Back to Search Start Over

A Blood Bank Standardized Production of Human Platelet Lysate for Mesenchymal Stromal Cell Expansion: Proteomic Characterization and Biological Effects

Authors :
Andrea Bianchetti
Clizia Chinello
Michele Guindani
Simona Braga
Arabella Neva
Rosanna Verardi
Giovanna Piovani
Lisa Pagani
Gina Lisignoli
Fulvio Magni
Domenico Russo
Camillo Almici
Source :
Frontiers in Cell and Developmental Biology, Vol 9 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Human platelet lysate (hPL) is considered a valid substitute to fetal bovine serum (FBS) in the expansion of mesenchymal stromal cells (MSC), and it is commonly produced starting from intermediate side products of whole blood donations. Through freeze–thaw cycles, hPL is highly enriched in chemokines, growth factors, and adhesion and immunologic molecules. Cell therapy protocols, using hPL instead of FBS for the expansion of cells, are approved by regulatory authorities without concerns, and its administration in patients is considered safe. However, published data are fairly difficult to compare, since the production of hPL is highly variable. This study proposes to optimize and standardize the hPL productive process by using instruments, technologies, and quality/safety standards required for blood bank activities and products. The quality and improved selection of the starting material (i.e., the whole blood), together with the improvement of the production process, guarantee a product characterized by higher content and quality of growth factors as well as a reduction in batch-to-batch variability. By increasing the number of freeze/thaw cycles from one (hPL1c) to four (hPL4c), we obtained a favorable effect on the release of growth factors from platelet α granules. Those changes have directly translated into biological effects leading to a decreasing doubling time (DT) of MSC expansion at 7 days (49.41 ± 2.62 vs. 40.61 ± 1.11 h, p < 0.001). Furthermore, mass spectrometry (MS)-based evaluation has shown that the proliferative effects of hPL4c are also combined with a lower batch-to-batch variability (10–15 vs. 21–31%) at the proteomic level. In conclusion, we have considered lot-to-lot hPL variability, and by the strict application of blood bank standards, we have obtained a standardized, reproducible, safe, cheap, and ready-to-use product.

Details

Language :
English
ISSN :
2296634X
Volume :
9
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cell and Developmental Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.48c623d30d85432e9cc66ffde2193cba
Document Type :
article
Full Text :
https://doi.org/10.3389/fcell.2021.650490