Back to Search Start Over

A Novel Wireless Propagation Model Based on Bi-LSTM Algorithm

Authors :
Yu Lu Yang
Guo Chun Wan
Mei Song Tong
Source :
IEEE Access, Vol 10, Pp 43837-43847 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Establishing accurate wireless propagation models is essential for high-quality communications. Aiming at the low accuracy and complexity of the traditional wireless propagation model, a novel accurate wireless propagation model is proposed based on the bi-directional long short-term memory (Bi-LSTM) algorithm of machine learning. The model uses machine learning technology driven by big data and can achieve high real-time performance with low complexity. Also, it can accurately predict the wireless signal coverage intensity in a new environment. To allow the model to accommodate the actual environment of target areas, the propagation model can be dynamically corrected by deep learning and training. The Bi-LSTM is used to describe the relationship between features themselves and the relationship between features and target values of reference signal receiving power (RSRP). The Bi-LSTM is also used to represent the relationship through a full-connection layer to obtain the results so that sufficient parameter space can be provided for the model. The propagation model parameters are searched and fitted through a full-connection optimization. After training and tuning, the model’s predicted value of poor coverage recognition rate (PCRR) can reach 0.2371, while the predicted value of root mean squared error (RMSE) can be 10.4855, which demonstrates the better accuracy of the proposed model.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.484f8a631c7447c49ebd9932225dc0af
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3169174