Back to Search Start Over

Altered brain white matter structural motor network in spinocerebellar ataxia type 3

Authors :
Xin‐Yuan Chen
Zi‐Qiang Huang
Wei Lin
Meng‐Cheng Li
Zhi‐Xian Ye
Yu‐Sen Qiu
Xiao‐Yue Xia
Na‐Ping Chen
Jian‐Ping Hu
Shi‐Rui Gan
Qun‐Lin Chen
Source :
Annals of Clinical and Translational Neurology, Vol 10, Iss 2, Pp 225-236 (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Objectives Spinocerebellar ataxia type 3 is a disorder within the brain network. However, the relationship between the brain network and disease severity is still unclear. This study aims to investigate changes in the white matter (WM) structural motor network, both in preclinical and ataxic stages, and its relationship with disease severity. Methods For this study, 20 ataxic, 20 preclinical SCA3 patients, and 20 healthy controls were recruited and received MRI scans. Disease severity was quantified using the SARA and ICARS scores. The WM motor structural network was created using probabilistic fiber tracking and was analyzed using graph theory and network‐based statistics at global, nodal, and edge levels. In addition, the correlations between network topological measures and disease duration or clinical scores were analyzed. Results Preclinical patients showed increasing assortativity of the motor network, altered subnetwork including 12 edges of 11 nodes, and 5 brain regions presenting reduced nodal strength. In ataxic patients assortativity of the motor network also increased, but global efficiency, global strength, and transitivity decreased. Ataxic patients showed a wider altered subnetwork and a higher number of reduced nodal strengths. A negative correlation between the transitivity of the motor network and SARA and ICARS scores was observed in ataxic patients. Interpretation Changes to the WM motor network in SCA3 start before ataxia onset, and WM motor network involvement increases with disease progression. Global network topological measures of the WM motor network appear to be a promising image biomarker for disease severity. This study provides new insights into the pathophysiology of disease in SCA3/MJD.

Details

Language :
English
ISSN :
23289503
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Annals of Clinical and Translational Neurology
Publication Type :
Academic Journal
Accession number :
edsdoj.483d362db934e1ab86a34a13cb37bf8
Document Type :
article
Full Text :
https://doi.org/10.1002/acn3.51713