Back to Search
Start Over
Impact of Box-Cox Transformation on Machine-Learning Algorithms
- Source :
- Frontiers in Artificial Intelligence, Vol 5 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- This paper studied the effects of applying the Box-Cox transformation for classification tasks. Different optimization strategies were evaluated, and the results were promising on four synthetic datasets and two real-world datasets. A consistent improvement in accuracy was demonstrated using a grid exploration with cross-validation. In conclusion, applying the Box-Cox transformation could drastically improve the performance by up to a 12% accuracy increase. Moreover, the Box-Cox parameter choice was dependent on the data and the used classifier.
Details
- Language :
- English
- ISSN :
- 26248212
- Volume :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Artificial Intelligence
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.48231d02c74445b0af657d3a8f415dbd
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/frai.2022.877569