Back to Search
Start Over
Genome-wide analysis of the AP2/ERF gene family in Tritipyrum and the response of TtERF_B2-50 in salt-tolerance
- Source :
- BMC Genomics, Vol 24, Iss 1, Pp 1-15 (2023)
- Publication Year :
- 2023
- Publisher :
- BMC, 2023.
-
Abstract
- Abstract The AP2/ERF transcription factor is widely distributed across the plant kingdom and plays a crucial role in various abiotic stress responses in plants. Tritipyrum, an octoploid resulting from an intergeneric cross between Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is a valuable source of germplasm for incorporating superior traits of Th. elongatum into T. aestivum. With the recent availability of whole -genome sequences for T. aestivum and Th. elongatum, we explored the organization and expression profiling of Tritipyrum AP2/ERF genes across the entire genome. Our investigation identified 543 Tritipyrum AP2/ERF genes, which evolutionary analysis categorized into four major groups (AP2, DREB, ERF, and RAV), whose members share a conserved motif composition. These 543 TtAP2/ERF genes were distributed throughout 28 chromosomes, with 132 duplications. Synteny analysis suggests that the AP2/ERF gene family may have a common ancestor. Transcriptome data and Real-Time PCR expression profiles revealed 43 TtAP2/ERF genes with high expression levels in response to various salt stressors and recovery regimens. Tel2E01T236300 (TtERF_B2-50) was particularly salt stress-sensitive and evolutionarily related to the salt-tolerant gene AtERF7 in A. thaliana. Pearson correlation analysis identified 689 genes positively correlated (R > 0.9) with TtERF_B2-50 expression, enriched in metabolic activities, cellular processes, stimulus response, and biological regulation. Real-time PCR showed that TtERF_B2-50 was highly expressed in roots, stems, and leaves under salt stress. These findings suggest that TtERF_B2-50 may be associated with salt stress tolerance and may serve as a valuable foreign gene for enhancing salt tolerance in wheat.
Details
- Language :
- English
- ISSN :
- 14712164
- Volume :
- 24
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- BMC Genomics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.48059f0d1a1747dead07219ca207b2e4
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12864-023-09585-x