Back to Search
Start Over
Strong Convergence Theorems for a Generalized Equilibrium Problem with a Relaxed Monotone Mapping and a Countable Family of Nonexpansive Mappings in a Hilbert Space
- Source :
- Fixed Point Theory and Applications, Vol 2010 (2010)
- Publication Year :
- 2010
- Publisher :
- SpringerOpen, 2010.
-
Abstract
- We introduce a new iterative method for finding a common element of the set of solutions of a generalized equilibrium problem with a relaxed monotone mapping and the set of common fixed points of a countable family of nonexpansive mappings in a Hilbert space and then prove that the sequence converges strongly to a common element of the two sets. Using this result, we prove several new strong convergence theorems in fixed point problems, variational inequalities, and equilibrium problems.
- Subjects :
- Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Subjects
Details
- Language :
- English
- ISSN :
- 16871820 and 16871812
- Volume :
- 2010
- Database :
- Directory of Open Access Journals
- Journal :
- Fixed Point Theory and Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4793d89cc09458dba810a5850f84196
- Document Type :
- article
- Full Text :
- https://doi.org/10.1155/2010/230304