Back to Search Start Over

Agronomic performance of Populus deltoides trees engineered for biofuel production

Authors :
David Macaya-Sanz
Jin‐Gui Chen
Udaya C. Kalluri
Wellington Muchero
Timothy J. Tschaplinski
Lee E. Gunter
Sandra J. Simon
Ajaya K. Biswal
Anthony C. Bryan
Raja Payyavula
Meng Xie
Yongil Yang
Jin Zhang
Debra Mohnen
Gerald A. Tuskan
Stephen P. DiFazio
Source :
Biotechnology for Biofuels, Vol 10, Iss 1, Pp 1-13 (2017)
Publication Year :
2017
Publisher :
BMC, 2017.

Abstract

Abstract Background One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. Results Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. Conclusions This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.

Details

Language :
English
ISSN :
17546834
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biotechnology for Biofuels
Publication Type :
Academic Journal
Accession number :
edsdoj.4791b0f523a746df814fdf6837d01880
Document Type :
article
Full Text :
https://doi.org/10.1186/s13068-017-0934-6