Back to Search Start Over

Low bend loss femtosecond laser written waveguides exploiting integrated microcrack

Authors :
Timothy Lee
Qi Sun
Martynas Beresna
Gilberto Brambilla
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract We introduce the fabrication and use of microcracks embedded in glass as an optical element for manipulating light propagation, in particular for enhancing waveguide performance in silica integrated optics. By using a femtosecond laser to induce a strong asymmetric stress pattern in silica, uniform cracks with set dimensions can be created within the substrate and propagated along a fixed path. The smoothness of the resulting cleave interface and large index contrast can be exploited to enhance waveguide modal confinement. As a demonstration, we tackle the longstanding high bend-loss issue in femtosecond laser written silica waveguides by using this technique to cleave the outer edge of laser written waveguide bends, to suppress radiative bend loss. The microcrack cross section is estimated to be 15 μm in height and 30 nm in width, for the 10 $$\times$$ × 10 μm waveguides. At 1550 nm wavelength, losses down to 1 dB/cm at 10 mm bend radius were achieved, without introducing additional scattering. Both the cleave stress pattern and waveguide are fabricated with the same multiscan writing procedure, without requiring additional steps, and re-characterisation of the waveguides after 1 year confirm excellent long term performance stability.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.478fd7b336e94ce2ac750f0aacd5c026
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-03116-y