Back to Search Start Over

Dark matter bound-state formation at higher order: a non-equilibrium quantum field theory approach

Authors :
Tobias Binder
Burkhard Blobel
Julia Harz
Kyohei Mukaida
Source :
Journal of High Energy Physics, Vol 2020, Iss 9, Pp 1-43 (2020)
Publication Year :
2020
Publisher :
SpringerOpen, 2020.

Abstract

Abstract The formation of meta-stable dark matter bound states in coannihilating scenarios could efficiently occur through the scattering with a variety of Standard Model bath particles, where light bosons during the electroweak cross over or even massless photons and gluons are exchanged in the t-channel. The amplitudes for those higher-order processes, however, are divergent in the collinear direction of the in- and out-going bath particles if the mediator is massless. To address the issue of collinear divergences, we derive the bound-state formation collision term in the framework of non-equilibrium quantum field theory. The main result is an expression for a more general cross section, which allows to compute higher-order bound-state formation processes inside the primordial plasma background in a comprehensive manner. Based on this result, we show that next-to-leading order contributions, including the bath-particle scattering, are i) collinear finite and ii) generically dominate over the on-shell emission for temperatures larger than the absolute value of the binding energy. Based on a simplified model, we demonstrate that the impact of these new effects on the thermal relic abundance is significant enough to make it worthwhile to study more realistic coannihilation scenarios.

Details

Language :
English
ISSN :
10298479
Volume :
2020
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.475b43dfd3f749b38971c483d9f86721
Document Type :
article
Full Text :
https://doi.org/10.1007/JHEP09(2020)086