Back to Search Start Over

Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor

Authors :
Daniel Hung Kay Chow
Luc Tremblay
Chor Yin Lam
Adrian Wai Yin Yeung
Wilson Ho Wu Cheng
Peter Tin Wah Tse
Source :
Sensors, Vol 21, Iss 14, p 4633 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Wearable sensors facilitate running kinematics analysis of joint kinematics in real running environments. The use of a few sensors or, ideally, a single inertial measurement unit (IMU) is preferable for accurate gait analysis. This study aimed to use a convolutional neural network (CNN) to predict level-ground running kinematics (measured by four IMUs on the lower extremities) by using treadmill running kinematics training data measured using a single IMU on the anteromedial side of the right tibia and to compare the performance of level-ground running kinematics predictions between raw accelerometer and gyroscope data. The CNN model performed regression for intraparticipant and interparticipant scenarios and predicted running kinematics. Ten recreational runners were recruited. Accelerometer and gyroscope data were collected. Intraparticipant and interparticipant R2 values of actual and predicted running kinematics ranged from 0.85 to 0.96 and from 0.7 to 0.92, respectively. Normalized root mean squared error values of actual and predicted running kinematics ranged from 3.6% to 10.8% and from 7.4% to 10.8% in intraparticipant and interparticipant tests, respectively. Kinematics predictions in the sagittal plane were found to be better for the knee joint than for the hip joint, and predictions using the gyroscope as the regressor were demonstrated to be significantly better than those using the accelerometer as the regressor.

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.475acf60444b1b4b34d59f8c2a517
Document Type :
article
Full Text :
https://doi.org/10.3390/s21144633