Back to Search Start Over

Analysis of anterior segment in primary angle closure suspect with deep learning models

Authors :
Ziwei Fu
Jinwei Xi
Zhi Ji
Ruxue Zhang
Jianping Wang
Rui Shi
Xiaoli Pu
Jingni Yu
Fang Xue
Jianrong Liu
Yanrong Wang
Hua Zhong
Jun Feng
Min Zhang
Yuan He
Source :
BMC Medical Informatics and Decision Making, Vol 24, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Objective To analyze primary angle closure suspect (PACS) patients’ anatomical characteristics of anterior chamber configuration, and to establish artificial intelligence (AI)-aided diagnostic system for PACS screening. Methods A total of 1668 scans of 839 patients were included in this cross-sectional study. The subjects were divided into two groups: PACS group and normal group. With anterior segment optical coherence tomography scans, the anatomical diversity between two groups was compared, and anterior segment structure features of PACS were extracted. Then, AI-aided diagnostic system was constructed, which based different algorithms such as classification and regression tree (CART), random forest (RF), logistic regression (LR), VGG-16 and Alexnet. Then the diagnostic efficiencies of different algorithms were evaluated, and compared with junior physicians and experienced ophthalmologists. Results RF [sensitivity (Se) = 0.84; specificity (Sp) = 0.92; positive predict value (PPV) = 0.82; negative predict value (NPV) = 0.95; area under the curve (AUC) = 0.90] and CART (Se = 0.76, Sp = 0.93, PPV = 0.85, NPV = 0.92, AUC = 0.90) showed better performance than LR (Se = 0.68, Sp = 0.91, PPV = 0.79, NPV = 0.90, AUC = 0.86). In convolutional neural networks (CNN), Alexnet (Se = 0.83, Sp = 0.95, PPV = 0.92, NPV = 0.87, AUC = 0.85) was better than VGG-16 (Se = 0.84, Sp = 0.90, PPV = 0.85, NPV = 0.90, AUC = 0.79). The performance of 2 CNN algorithms was better than 5 junior physicians, and the mean value of diagnostic indicators of 2 CNN algorithm was similar to experienced ophthalmologists. Conclusion PACS patients have distinct anatomical characteristics compared with health controls. AI models for PACS screening are reliable and powerful, equivalent to experienced ophthalmologists.

Details

Language :
English
ISSN :
14726947
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Medical Informatics and Decision Making
Publication Type :
Academic Journal
Accession number :
edsdoj.4710d3efc222439fbcaa261c12897b75
Document Type :
article
Full Text :
https://doi.org/10.1186/s12911-024-02658-1