Back to Search
Start Over
Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study
- Source :
- EBioMedicine, Vol 56, Iss , Pp 102777- (2020)
- Publication Year :
- 2020
- Publisher :
- Elsevier, 2020.
-
Abstract
- Background: The diagnosis performance of B-mode ultrasound (US) for focal liver lesions (FLLs) is relatively limited. We aimed to develop a deep convolutional neural network of US (DCNN-US) for aiding radiologists in classification of malignant from benign FLLs. Materials and methods: This study was conducted in 13 hospitals and finally 2143 patients with 24,343 US images were enrolled. Patients who had non-cystic FLLs with pathological results were enrolled. The FLLs from 11 hospitals were randomly divided into training and internal validations (IV) cohorts with a 4:1 ratio for developing and evaluating DCNN-US. Diagnostic performance of the model was verified using external validation (EV) cohort from another two hospitals. The diagnosis value of DCNN-US was compared with that of contrast enhanced computed tomography (CT)/magnetic resonance image (MRI) and 236 radiologists, respectively. Findings: The AUC of ModelLBC for FLLs was 0.924 (95% CI: 0.889–0.959) in the EV cohort. The diagnostic sensitivity and specificity of ModelLBC were superior to 15-year skilled radiologists (86.5% vs 76.1%, p = 0.0084 and 85.5% vs 76.9%, p = 0.0051, respectively). Accuracy of ModelLBC was comparable to that of contrast enhanced CT (both 84.7%) but inferior to contrast enhanced MRI (87.9%) for lesions detected by US. Interpretation: DCNN-US with high sensitivity and specificity in diagnosing FLLs shows its potential to assist less-experienced radiologists in improving their performance and lowering their dependence on sectional imaging in liver cancer diagnosis.
Details
- Language :
- English
- ISSN :
- 23523964
- Volume :
- 56
- Issue :
- 102777-
- Database :
- Directory of Open Access Journals
- Journal :
- EBioMedicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.47107e92e01a409e9fea1a6ebc4f149f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.ebiom.2020.102777