Back to Search
Start Over
Intensive Broadband Reverberation Mapping of Fairall 9 with 1.8 yr of Daily Swift Monitoring
- Source :
- The Astrophysical Journal, Vol 973, Iss 2, p 152 (2024)
- Publication Year :
- 2024
- Publisher :
- IOP Publishing, 2024.
-
Abstract
- We present 1.8 yr of near-daily Swift monitoring of the bright, strongly variable Type 1 active galactic nucleus (AGN) Fairall 9. Totaling 575 successful visits, this is the largest such campaign reported to date. Variations within the UV/optical are well correlated, with longer wavelengths lagging shorter wavelengths in the direction predicted by thin-disk/lamppost models. The correlations are improved by “detrending,” subtracting a second-order polynomial fit to the UV/optical light curves to remove long-term trends that are not of interest to this study. Extensive testing indicates detrending with higher-order polynomials removes too much intrinsic variability signal on reverberation timescales. These data provide the clearest detection to date of interband lags within the UV, indicating that neither emission from a large disk nor diffuse continuum emission from the broad-line region (BLR) can independently explain the full observed lag spectrum. The observed X-ray flux variations are poorly correlated with those in the UV/optical. Further, subdivision of the data into four ∼160 days light curves shows that the UV/optical lag spectrum is highly stable throughout the four periods, but the X-ray to UV lags are unstable, significantly changing magnitude and even direction from one period to the next. This indicates the X-ray to UV relationship is more complex than predicted by the simple reprocessing model often adopted for AGN. A “bowl” model (lamppost irradiation and blackbody reprocessing on a disk with a steep rim) fit suggests the disk thickens at a distance (∼10 lt-day) and temperature (∼8000 K) consistent with the inner edge of the BLR.
- Subjects :
- Active galaxies
Seyfert galaxies
Astrophysics
QB460-466
Subjects
Details
- Language :
- English
- ISSN :
- 15384357
- Volume :
- 973
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- The Astrophysical Journal
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.46e8ee0d7c844fd8c3894805e608c35
- Document Type :
- article
- Full Text :
- https://doi.org/10.3847/1538-4357/ad64d4