Back to Search Start Over

Novel Validated Analytical Method Based on Potentiometric Transduction for the Determination of Citicoline Psychostimulant/Nootropic Agent

Authors :
Ayman H. Kamel
Abd El-Galil E. Amr
Hoda R. Galal
Abdulrahman A. Almehizia
Source :
Molecules, Vol 25, Iss 15, p 3512 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Herein, a novel validated potentiometric method is presented for the first time for citicoline determination. The method is based on measuring the potential using new constructed citicoline electrodes. The electrodes are based on the use of citicolinium/phosphomolybdate [Cit]2[PM] (sensor I) and citicolinium/tetraphenylborate [Cit][TPB] (sensor II) ion association complexes. These sensory materials were dispersed in plasticized polyvinyl chloride (PVC) polymeric membranes. The sensors revealed a Nernstian response with the slopes 55.9 ± 1.8(r2 = 0.9994) and 51.8 ± 0.9 (r2 = 0.9991) mV/decade over a linearity range of 6.3 × 10−6–1.0 × 10−3 and 1.0 × 10−5–1.0 × 10−3 M and detection limits of 3.16 × 10−6 and 7.1 × 10−6 M for sensors I and II, respectively. To ensure the existence of monovalent citicoline, all measurements were performed in 50 mM acetate buffer at pH 3.5. All presented electrodes showed good performance characteristics such as rapid response, good selectivity, high potential-stability and long life-span. Method verification and validation in terms of response linearity, quantification limit, accuracy, bias, trueness, robustness, within-day variability and between-days variability were evaluated. The method was introduced for citicoline determination in different pharmaceutical formulations and compared with the standard high performance liquid chromatography (HPLC) method.

Details

Language :
English
ISSN :
14203049
Volume :
25
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.46d8a82d98fc4b56ab0b95419bf31d56
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules25153512