Back to Search Start Over

AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

Authors :
Yang Li
Mengxue Yang
Zhuo Huang
Xiaoping Chen
Michael T. Maloney
Li Zhu
Jianghong Liu
Yanmin Yang
Sidan Du
Xingyu Jiang
Jane Y. Wu
Source :
Neurosignals, Vol 22, Iss 1, Pp 14-29 (2014)
Publication Year :
2014
Publisher :
Cell Physiol Biochem Press GmbH & Co KG, 2014.

Abstract

Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

Details

Language :
English
ISSN :
1424862X and 14248638
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Neurosignals
Publication Type :
Academic Journal
Accession number :
edsdoj.46c2b62d3ba34c32860d1f2e9035ff30
Document Type :
article
Full Text :
https://doi.org/10.1159/000358092