Back to Search Start Over

Factors Governing the Pretreatment Process of Lignocellulosic Biomass in an Acidic Pyrrolidonium Ionic Liquid

Authors :
Xiao-Mei Hu
Fu-Ling Wang
Hui-Hui Ma
Bi-Xian Zhang
Yun-Fei Gao
Bao-Zhong Hu
Source :
BioResources, Vol 11, Iss 4, Pp 9896-9911 (2016)
Publication Year :
2016
Publisher :
North Carolina State University, 2016.

Abstract

Ionic liquid (IL)-assisted pretreatment is an important step in biochemical conversion of lignocellulosic biomass into biofuels. Design for low-cost ILs that efficiently work at a relatively low pretreatment temperature with a short processing time is of great interest. In this work, a functional acidic ionic liquid, 1-H-N-methyl-2-pyrrolidonium chloride ([Hnmp]Cl), was prepared by a simple synthetic procedure in a cost-effective manner and was then investigated for use in the pretreatment of lignocellulosic biomass. Factors including temperature, time, ratio of biomass to ionic liquid, and water content were studied to determine their impact on the pretreatment of lignocellulose; 91.39% of lignin content was recovered when the corn stalk was pretreated by pure [Hnmp]Cl at 100 °C for 45 min with a biomass loading of 5%. The highest glucose yield attained was 93.20% and the highest cellobiose yield was 18.76%, when the ratio of biomass to water was kept at 1:4. The pretreatment efficacy was dependent on the pretreatment temperature and processing time, which was more efficient for pure ionic liquid with respect to lignin recovery from lignocelluloses. However, more efficient enzymatic saccharification of cellulose-rich materials was achieved with aqueous ionic liquid.

Details

Language :
English
ISSN :
19302126
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
BioResources
Publication Type :
Academic Journal
Accession number :
edsdoj.46b67e838414aeb93bc91342c3bb515
Document Type :
article
Full Text :
https://doi.org/10.15376/biores.11.4.9896-9911