Back to Search Start Over

Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

Authors :
Hicks Steven D
Lewis Lambert
Ritchie Julie
Burke Patrick
Abdul-Malak Ynesse
Adackapara Nyssa
Canfield Kelly
Shwarts Erik
Gentile Karen
Meszaros Zsuzsa
Middleton Frank A
Source :
BMC Neuroscience, Vol 13, Iss 1, p 128 (2012)
Publication Year :
2012
Publisher :
BMC, 2012.

Abstract

Abstract Background Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and neuropsychological measures. Conclusions These results demonstrate that alcohol-induced changes in genes related to proliferation, apoptosis, and DNA-repair are observable in the peripheral blood and may serve as a useful biomarker for CNS structural damage and functional performance deficits in human AUD subjects.

Details

Language :
English
ISSN :
14712202
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.468b83b476ba4396b6cc8436a7c5dee5
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2202-13-128