Back to Search
Start Over
Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells
- Source :
- Stem Cell Research, Vol 13, Iss 2, Pp 316-328 (2014)
- Publication Year :
- 2014
- Publisher :
- Elsevier, 2014.
-
Abstract
- The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 18735061 and 18767753
- Volume :
- 13
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Stem Cell Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.46722f2d55d4f7c98adb87609ff216b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.scr.2014.07.008